PHYSICAL AND ECONOMIC OPTIMUM FOR SINGLE INPUT

Let $y=f(x)$ be a response function. Here x stands for the input that is kgs of fertilizer applied per hectare and y the corresponding output that is kgs of yield per hectare.

We know that the maximum is only when $\frac{d y}{d x}=0$ and $\frac{d^{2} y}{d x^{2}}<0$.
This optimum is called physical optimum. We are not considering the profit with respect to the investment, we are interested only in maximizing the profit.

Economic optimum

The optimum which takes into consideration the amount invested and returns is called the economic optimum.

$$
\frac{d y}{d x}=\frac{P_{x}}{P_{y}}
$$

where $P_{x \rightarrow}$ stands for the per unit price of input that is price of fertilizer per kgs.
$P_{y \rightarrow}$ stands for the per unit price of output that is price of yield per kgs.

Problem

The response function of paddy is $y=1400+14.34 x-0.05 x^{2}$ where x represents kgs of nitrogen/hectare and y represents yield in kgs/hectare. 1 kg of paddy is Rs. 2 and 1 kg of nitrogen is Rs. 5. Find the physical and economic optimum. Also find the corresponding yield.

Solution

$y=1400+14.34 x-0.05 x^{2}$
$\frac{d y}{d x}=14.34-0.1 x$
$\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}=-0.1=$ negative value
ie. $\frac{d^{2} y}{d x^{2}}<0$
Therefore the given function has a maximum point.
Physical Optimum
$\frac{d y}{d x}=0$
i.e $14.34-0.1 x=0$
$-0.1 x=-14.34$
$x=\frac{14.34}{0.1}=143.4 \mathrm{kgs} /$ hectare
therefore the physical optimum level of nitrogen is $143.4 \mathrm{kgs} / \mathrm{hectare}$.
Therefore the maximum yield is
$Y=1400+14.34(143.4)-0.05(143.4)^{2}$ $=2428.178 \mathrm{kgs} /$ hectare .

Economic optimum

$\frac{d y}{d x}=\frac{P_{x}}{P_{y}}$
Given
Price of nitrogen per $\mathrm{kg}=\mathrm{P}_{\mathrm{x}}=5$
Price of yield per kg $=P_{y}=2$
Therefore $\frac{\mathrm{dy}}{\mathrm{dx}}=14.34-0.1 x=\frac{5}{2}$

$$
28.68-0.2 x=5
$$

$-0.2 x=5-28.68$
$x=\frac{23.68}{0.2}=118.4 \mathrm{kgs} /$ hectare
therefore the economic optimum level of nitrogen is $118.4 \mathrm{kgs} /$ hectare.
Therefore the maximum yield is

$$
\begin{aligned}
Y & =1400+14.34(118.4)-0.05(118.4)^{2} \\
& =2396.928 \mathrm{kgs} / \text { hectare } .
\end{aligned}
$$

Maxima and Minima of several variables with constraints and without constraints
Consider the function of several variables

$$
y=f\left(x_{1}, x_{2} \ldots \ldots \ldots . x_{n}\right)
$$

where $\mathrm{x}_{1}, \mathrm{x}_{2} \ldots \ldots \ldots \ldots . . \mathrm{x}_{\mathrm{n}}$ are n independent variables and y is the dependent variable.

Working Rule

Step 1: Find all the first order partial derivatives of y with respect to $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3} \ldots \ldots \mathrm{x}_{\mathrm{n}}$.

$$
\text { (ie) } \begin{aligned}
\frac{\partial y}{\partial x_{1}} & =f_{1} \\
\frac{\partial y}{\partial x_{2}} & =f_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial y}{\partial x_{3}}=f_{3} \\
& \cdot \\
& \frac{\partial \mathrm{y}}{\partial \mathrm{x}_{\mathrm{n}}}=\mathrm{fn}
\end{aligned}
$$

Step 2

Find all the second order partial derivatives of y with respect to $x_{1}, x_{2}, x_{3} \ldots . x_{n}$ and they are given as follows.

$$
\begin{aligned}
& \frac{\partial^{2} y}{\partial x_{1}^{2}}=f_{11} \\
& \frac{\partial^{2} y}{\partial x_{2} \partial x_{1}}=f_{21} \\
& \frac{\partial^{2} y}{\partial x_{2}{ }^{2}}=f_{22} \\
& \frac{\partial^{2} y}{\partial x_{1} \partial x_{2}}=f_{12} \\
& \frac{\partial^{2} y}{\partial x_{3}{ }^{2}}=f_{33} \\
& \frac{\partial^{2} y}{\partial x_{3} \partial x_{1}}=f_{31} \\
& \frac{\partial^{2} y}{\partial x_{1} \partial x_{3}}=f_{13} \text { and so on }
\end{aligned}
$$

Step: 3

Construct an Hessian matrix which is formed by taking all the second order partial derivatives is given by

$$
H=\left[\begin{array}{lll}
f_{11} & f_{12} & f_{13} \cdots \ldots \ldots \ldots \ldots f_{1 n} \\
f_{21} & f_{22} & f_{23} \ldots \ldots \ldots \ldots \ldots f_{2 n} \\
\cdot & & \\
f_{n 1} & f_{n 2} & f_{n 3} \cdots \ldots \ldots \ldots . . f_{n n}
\end{array}\right]
$$

H is a symmetric matrix.
Step: 4
Consider the following minors of order $1,2,3 \ldots \ldots \ldots$
$\left|\mathrm{H}_{1}\right|=\left|\mathrm{f}_{11}\right|=\mathrm{f}_{11}$
$\left|H_{2}\right|=\left|\begin{array}{ll}f_{11} & f_{12} \\ f_{21} & f_{22}\end{array}\right|$
$\left|H_{3}\right|=\left|\begin{array}{lll}f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33}\end{array}\right|$
$\left|H_{n}\right|=\left|\begin{array}{cccc}f_{11} & f_{12} & f_{13} \ldots \ldots \ldots \ldots . f_{1 n} \\ f_{21} & f_{22} & f_{23} \ldots \ldots \ldots \ldots . f_{2 n} \\ \cdot & \cdot & \cdot & \cdot \\ f_{n 1} & f_{n 2} & f_{n 3} \cdots \ldots \ldots \ldots \ldots f_{n n}\end{array}\right|$

Steps: 5

The necessary condition for finding the maximum or minimum

Equate the first order derivative to zero (i.e) $f_{1}=f_{2}=\ldots \ldots . . f_{n}=0$ and find the value of $x_{1}, x_{2}, \ldots \ldots . x_{n}$.
Steps: 6
Substitute the values $\mathrm{x}_{1}, \mathrm{x}_{2} \ldots \ldots . . \mathrm{x}_{\mathrm{n}}$ in the Hessian matrix. Find the values of $\left|H_{1}\right|,\left|H_{2}\right|,\left|H_{3}\right| \ldots \ldots\left|H_{n}\right|$
$\left|H_{1}\right|<0$
If $\left\lvert\, \begin{aligned} & \left|H_{2}\right|>0 \\ & \left|H_{3}\right|<0\end{aligned}\right.$
$\left|H_{4}\right|>0$.......... and so on.
Then the function is maximum at $x_{1}, x_{2} \ldots \ldots . x_{n}$.
If $\left|H_{1}\right|>0, \quad\left|H_{2}\right|>0, \quad\left|H_{3}\right|>0 \ldots \ldots .$. then the function is minimum at $x_{1}, x_{2} \ldots \ldots . x_{n}$.

Steps: 7

Conditions	Maximum	Minimum
First	$\mathrm{f}_{1}=\mathrm{f}_{2}=\mathrm{f}_{3}=\mathrm{f}_{\mathrm{n}}=0$	$\mathrm{f}_{1}=0, \mathrm{f}_{2}=0 \ldots \ldots \mathrm{f}_{\mathrm{n}}=0$
Second	$\left\|H_{1}\right\|<0$	$\left\|H_{1}\right\|>0$
	$\left\|H_{2}\right\|>0$	$\left\|H_{2}\right\|>0$
	$\left\|H_{3}\right\|<0$	$\left\|H_{3}\right\|>0$
	$\ldots \ldots \ldots$.	\cdot
		\cdot
		\cdot

Note:
If the second order conditions are not satisfied then they are called saddle point.
Problem
Find the maxima (or) minima if any of the following function.

$$
\begin{equation*}
\mathrm{y}=\frac{4}{3} \mathrm{x}_{1}^{3}+\mathrm{x}_{2}^{2}-4 \mathrm{x}_{1}+8 \mathrm{x}_{2} \tag{1}
\end{equation*}
$$

Solution

Step 1: The first order partial derivatives are
$f_{1}=\frac{\partial y}{\partial x_{1}}=4 x_{1}^{2}-4$
$f_{2}=\frac{\partial y}{\partial x_{2}}=2 x_{2}+8$
Step 2: The second order partial derivatives are
$f_{11}=\frac{\partial^{2} y}{\partial x_{1}{ }^{2}}=8 x_{1}$
$f_{21}=\frac{\partial^{2} y}{\partial x_{2} \partial x_{1}}=0$
$f_{22}=\frac{\partial^{2} y}{\partial x_{2}{ }^{2}}=2$
$f_{12}=\frac{\partial^{2} y}{\partial x_{1} \partial x_{2}}=0$
Step 3: The Hessian matrix is $H=\left[\begin{array}{ll}f_{11} & f_{12} \\ f_{21} & f_{22}\end{array}\right]$

$$
\mathrm{H}=\left[\begin{array}{cc}
8 \mathrm{x}_{1} & 0 \\
0 & 2
\end{array}\right]
$$

4. Equate $\quad f_{1}, f_{2}=0$

$$
\begin{gathered}
\mathrm{f}_{1} \Rightarrow 4 \mathrm{x}_{1}{ }^{2-4=0} \\
\\
\\
\\
\\
\\
\mathrm{x}_{1}{ }^{2}=1 \\
\mathrm{x}_{1}= \pm 1 \\
\mathrm{f}_{2}=1, x_{1}=-1 \\
\\
\\
\\
\\
\\
\\
2 x_{2}+8=0 \\
\\
\\
x_{2}=-4
\end{gathered}
$$

The stationary points are $(1,-4) \&(-1,-4)$
At the point $(1,-4)$ the Hessian matrix will be

$$
H=\left[\begin{array}{ll}
8 & 0 \\
0 & 2
\end{array}\right]
$$

$$
\begin{aligned}
\left|H_{1}\right| & =|8|>0 \\
\left|H_{2}\right| & =\left[\begin{array}{ll}
8 & 0 \\
0 & 2
\end{array}\right]=16>0
\end{aligned}
$$

Since the determinant H_{1} and H_{2} are positive the function is minimum at ($1,-4$).
The minimum value at $x_{1}=1 \& x_{2}=-4$ is obtained by substituting the values in (1)

$$
\begin{aligned}
& y=\frac{4}{3}(1)^{3}+(-4)^{2}-4(1)+8(-4) \\
& y=\frac{4}{3}+16-4-32 \\
& y=\frac{4}{3}-20 \\
& y=\frac{4-60}{3}=\frac{-56}{3}
\end{aligned}
$$

The minimum value is $\frac{-56}{3}$
At the point $(-1,-4)$

$$
\begin{aligned}
& H=\left|\begin{array}{rr}
-8 & 0 \\
0 & 2
\end{array}\right| \\
& \left|H_{1}\right|=|-8|=-8<0 \\
& \left|H_{2}\right|=-16<0
\end{aligned}
$$

Both the conditions are not satisfied. Hence the point $(-1,-4)$ gives a saddle point.

Economic Optimum

For finding the Economic Optimum we equate the first order derivative
$f_{1}, f_{2} \ldots f_{n}$ to the inverse ratio of the unit prices.
(ie) $f_{1}=\frac{\partial y}{\partial x_{1}}=\frac{p_{x_{1}}}{p_{y}}$

$$
\begin{aligned}
& \mathrm{f}_{2}=\frac{\partial \mathrm{y}}{\partial \mathrm{x}_{2}}=\frac{\mathrm{p}_{\mathrm{x}_{2}}}{\mathrm{p}_{\mathrm{y}}} \ldots \ldots \ldots \ldots \\
& \mathrm{f}_{\mathrm{n}}=\frac{\partial \mathrm{y}}{\partial \mathrm{x}_{\mathrm{n}}}=\frac{\mathrm{p}_{\mathrm{x}_{\mathrm{n}}}}{\mathrm{p}_{\mathrm{y}}}
\end{aligned}
$$

where $P x_{1}, P x_{2}, \ldots P x_{n}$ and $P y$ are the unit prices of $x_{1}, x_{2} \ldots . . x_{n}$ and y. These are the first order condition.

The economic optimum \& the physical optimum differ only in the first order conditions. The other procedures are the same.

Maxima \& Minima of several variables under certain condition with constraints.

Consider the response function
$y=f\left(x_{1}, x_{2} \ldots x_{n}\right)$ subject to the constraint $\phi\left(x_{1}, x_{2} \ldots . . x_{n}\right)=0$
The objective function is $Z=f(x 1, x 2, \ldots x n)+\lambda[\phi(x 1, x 2, \ldots x n)]$
where λ is called the Lagrange's multiplies.
The partial derivatives are

$$
\begin{array}{ll}
\frac{\partial \mathrm{z}}{\partial x_{i}}=f i & \text { for } \mathrm{i}=1,2 \ldots . \mathrm{n} . \\
\frac{\partial^{2} \mathrm{z}}{\partial \mathrm{x}_{\mathrm{i}} \partial \mathrm{x}_{1}}=\mathrm{f}_{\mathrm{ij}} & \mathrm{i}, \mathrm{j}=1 ., 2 \ldots \mathrm{n} . \\
\frac{\partial \phi}{\partial x_{i}}=\phi \mathrm{i} & \mathrm{i}=1,2 \ldots . \mathrm{n} .
\end{array}
$$

Now form the Bordered Hessian Matrix as follows.
Bordered Hessian $\bar{H}=\left[\begin{array}{lll}0 & \phi_{1} & \phi_{2} \ldots \ldots \ldots \ldots . . \phi_{1} \\ \phi_{1} & f_{11} & f_{12} \ldots \ldots \ldots \ldots . f_{1 n} \\ \phi_{2} & f_{21} & f_{22} \ldots \ldots \ldots \ldots . f_{2 n} \\ . & . & \\ . & & \\ \phi_{2} & f_{n 1} & f_{n 2} \ldots \ldots \ldots \ldots . f_{n n}\end{array}\right]$
[Since this extra row \& column is on the border of the matrix $\left[\begin{array}{lll}f_{11} & f_{12} \ldots \ldots . . f_{1 n} \\ f_{21} & f_{22} \ldots \ldots \ldots f_{2 n} \\ f_{n 1} & f_{n 2} \ldots \ldots . . f_{n n}\end{array}\right]$.So
we call it as Bordered Hessian matrix and it is denoted by \bar{H}]
Here minor as are
$\left[\bar{H}_{1}\right]=\left|\begin{array}{ll}0 & \phi_{1} \\ \phi_{1} & f_{1 i}\end{array}\right|, \quad\left|\bar{H}_{2}\right|=\left|\begin{array}{ccc}0 & \phi_{1} & \phi_{2} \\ \phi_{1} & f_{11} & f_{12} \\ \phi_{2} & f_{21} & f_{22}\end{array}\right|$

$$
\left|\bar{H}_{3}\right|=\left|\begin{array}{llll}
0 & \phi_{1} & \phi_{2} & \phi_{3} \\
\phi_{1} & f_{11} & f_{12} & f_{13} \\
\phi_{2} & f_{21} & f_{22} & f_{23} \\
\phi_{3} & f_{31} & f_{32} & f_{33}
\end{array}\right| \quad \text { and so on. }
$$

Problem

Conditions	Maxima	Minima
First Order	$\mathrm{f}_{1}=\mathrm{f}_{2}=\mathrm{f}_{3}=\ldots . \mathrm{f}_{\mathrm{n}}=0$	$\mathrm{f}_{1=} \mathrm{f}_{2}=\mathrm{f}_{3} \ldots \ldots \mathrm{f}_{\mathrm{n}}=0$
Second Order	$\left\|\bar{H}_{2}\right\|>0\left\|\bar{H}_{3}\right\|<0,\left\|\bar{H}_{4}\right\|>0 \ldots$.	$\left\|\overline{\mathrm{H}}_{2}\right\|<0,\left\|\overline{\mathrm{H}}_{3}\right\|<0,\left\|\overline{\mathrm{H}}_{4}\right\|<0 \ldots$

Consider a consumer with a simple utility function $U=f(x, y)=4 x y-y^{2}$. If this consumer can at most spend only Rs. 6/- on two goods x and y and if the current prices are Rs. 2/- per unit of x and Rs.1/- per unit of y. Maximize the function.

